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A three-dimensional vortex method based on the discretization of the vorticity field into
vortex vector elements of finite spherical cores is constructed for the simulation of inviscid
incompressible flow. The velocity is obtained by summing the contribution of individual
elements using the Biot-Savart law desingularized according to the vorticity cores. Vortex
elements are transported in Lagrangian coordinates, and vorticity is redistributed, when
necessary, among larger number of elements arranged along its direction. The accuracy and
convergence of the method are investigated by comparing numerical solutions to analytical
results on the propagation and stability of vortex rings. Accurate discretization of the initial
vorticity field is shown to be essential for the prediction of the linear growth of azimuthal
instability waves on vortex rings. The unstable mode frequency, growth rate and shape are in
agreement with analytical results. The late stages of evolution of the instability show the
generation of small scales in the form of hair-pin vortex structures. The behavior of the
turbulent vortex ring is in good qualitative agreement with experimental data.  © 1990 Academic

Press, Inc.

]. INTRODUCTION

The subject of this paper is the comstruction and validation of a Lagrangian,
grid-free vortex method for the simulation of 3-dimensional, unsteady, inviscid,
incompressible flow. In these flows, as exemplified by shear layers, jets, and wakes,
vorticity remains confined to a small fraction of the total volume of the field while
experiencing rapid and large distortion. Kinematically, vorticity is transported
along particle paths while its magnitude is modified according to the strain field.
Moreover, if the vorticity field and boundary conditions are specified, the velocity
field can be computed by direct integration. Thus, a complete simulation sheme of
the flow can be built on the tracking of the vorticity field in Lagrangian coor-
dinates. These facts make vortex methods in which the vorticity field is respresented
by a finite number of localized vortex elements particularly attractive. Using these
methods, accurate numerical simulation of complex non-linear flows can be
achieved at a limited computational effort.

In a 3-dimensional flow, several forms of instability may arise sequentially or
simultaneously. As a result of these multiple instabilities, rapid and strong distor-
tions of the flow map and the vorticity field are observed. The changes in the
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vorticity field can pose serious challenges to computational methods that attempt to
capture the late stages of development using grids of fixed coordinates. Moreover,
the changes in the vorticity distribution are associated with the formation of length
scales which are smaller than those that existed at early times by the action of the
strain field in the direction of the vortex lines. This makes it necessary to employ
a scheme of local grid refinement as time progresses.

The desire to resolve small scale, streamwise structures in turbulent shear flows
constitutes the motivation behind the task of constructing 3-dimensional vortex
methods. While the ultimate goal of this work is the development of numerical
solutions of the Navier—Stokes equations at high Reynolds number in complex
geometry, we limit our attention in this paper to the construction and validation of
a vortex method for the solution of the incompressible Euler equations in free
space. The scheme is based on the discretization of the vorticity field into a number
of vortex vector elements with finite point-symmetric cores and following the
motion of these elements in Lagrangian coordinates. The vortex vector elements
change their vorticity according to the local stretch, while their direction is deter-
mined by the tilting of the material lines. The velocity is computed by summing
over the ficlds of individual vortex elements which are evaluated from the
desingularized Biot—Savart integral.

The evolution of vortex rings in an inviscid flow is selected as a case study for
the validation of the proposed vortex method. The choice of this problem was
motivated by the following reason. There exist two different linear stability theories,
based on a non-deforming core model and a more accurate deforming core model,
indicating that a vortex ring is unstable to azimuthal bending waves around its
perimeter [ 1-4]. Experimental data which support the results of the linear theory
of the deforming core model are also available [5-9]. Another attractive feature of
vortex rings at high Reynolds numbers lies in the fact that the finite-amplitude wave
breaking of the azimuthal instability does not lead to a substantial increase in the
size of the support of the vorticity field. Instead, the process leads to the formation
of a turbulized vortex ring, a ring of approximately the same dimensions as the
original ring but with a highly turbulent core [3]. The volume over which com-
putational elements should be distributed is thus not expected to increase substan-
tially under the action of the strain field. Meanwhile, the growth of the number of
computational elements, if necessary, will be mainly due to vortex stretching,

The paper is organized as follows. The formulation of the vortex method is
described in Section II. The study of propagation and stability of vortex rings are
tackled using two different physical models for their structure. In Section III, we
use the thin tube model in which the core of the ring is assumed to be small and
non-deformable. A more accurate model, where the dynamics of the flow within the
core of the physical vortex are properly taken into account, is used in Section IV.
Computations are performed for rings with different core-to-radius ratios and
results of both models are compared to analytical expressions for the propagation
velocity, to the predictions to the linear theory of vortex ring instability, and to
experimental data. The simulations are then extended beyond the linear range of
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growth of the azimuthal instability to study the formation of a turbulent vortex
ring, In Section V, we present conclusions regarding the convergence of the scheme
and a discussion of the properties of vortex rings.

II. FORMULATION AND NUMERICAL SCHEME

IL.1. Equations of Motion

The motion of an incompressible, inviscid fluid is governed by the Euler equations:
Vou=0 (1)

%%*FU-VII:—V}} )
expressing the conservation of mass and momentum, respectively. In these equa-
tions, x={(x, y, z) is the position vector, u=(u, v, w) is the velocity, ¢ is time,
YV =(0/0x, 8/0y, 8/0z) is the gradient operator, and p is pressure. Variables are non-
dimensionalized with respect to the appropriate combination of a characteristic
length, a characteristic velocity, and the density. The governing equations can be
rewritten in terms of the vorticity o, defined as

0o=Vxu (3)

by taking the curl of Eq. (2). Using Eq. (1) and the fact that, by definition, the
vorticity forms a solenoidal vector field, we obtain the vorticity transport equation:

0
6~°;’+u-Vm=m-Vu. (4)

Equation {4) indicates that the vorticity moves along a particle path while it
is being tilted and stretched with the evolving strain field, Vu. This can be sesn

by comparing the vorticity transport equation with the equation governing the
evolution of a differential material element dy:

d
é;éx+u-V5x=5x-\7u. (5)

This comparison yields the well-known Helmhoitz theorem.

If the vorticity distribution is known, the velocity can be evaluated from the
integration of Egs. (1) and (3). Based on the uniqueness of the decomposition of a
vector field, the velocity can be split into two components

u=1u,+u, (6}

where u,, is a solenoidal field and u, is a potential field. Furthermore, we assume
the existence of a vector stream function y satisfying:

u,=Vxy. (7}
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By construction, u,, satisfies the continuity equation since V - Vxy vanishes identi-
cally. Substituting Eq. (6) into Eq. (3) and assuming that v itself is divergence-free,
we obtain

Viy=—a. (3)

The solution of this equation is given by

w(x) = [ Gx—x') o(x) dx’, )

where x’ is the position of the volume element dx’, and
G(x)=1/4nr (10)

is the Green function of the Poisson equation in three dimensions, where » = |x|. As
shown by Batchelor [10], the vector stream function ¥ given by the above expres-
sion is solenoidal, as previously assumed, if the boundaries of the domain extend
to infinity, where the velocity is assumed to decay to zero. Equation (6) states that
the velocity can be written as the sum of a rotational component induced by the
vorticity field in an unbounded space and a potential component required to satisfy
the boundary conditions. For an unbounded domain with no interior boundaries,
u, vanishes identically.

The velocity component u,, can be evaluated from Eqs. (7) and (9), yielding the
well-known Biot-Savart law,

u(x)zfl((x—x')xm(x')dx', (11)
where
1 x
K(x)= == 5. (12)

Next, we show how to use Egs. (4), (5), and (11) to construct a vortex scheme.

I1.2. Numerical Scheme

The construction of the numerical method starts with the discretization of the
initial vorticity field into a number of vortex vector elements, each with vorticity o;,
on a 3-dimensional mesh. The support of the initial vorticity is divided into volume
elements dV,,i=1,2, .., N, and the vorticity is written as

o(x,0)= 3 ©,0)dV,/y(x—X,) (13)

i=1

where X is the center of the volume element dV, and o, is the vorticity associated
with the element i The vorticity associated with each element is smoothed in a
small neighborhood of X; according to a spherical core function f; with a core
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radius 6. The core function f; is chosen to satisfy the conditions: (1) | f5(x) dx =1
and f; converges to the Dirac delta function &(-) in the sense of distributions. as
5 —0; (2) the induced velocity field away from the core is the same as that induced
by a concentrated vortex element, i.e., the core function decays at a fast rate; and
{3) the velocity field of a finite vortex element is non-singular at its center. Let

1 r
=5 1(3) (14)

where />0 for » <0 and vanishes rapidly for r > §, so that § represents the radius
of the sphere where most of the vorticity is concentrated. Note that if f; was chosen
to be the Dirac delta function, Eq. (13) would represent the distribution of singular
vortex elements. In what follows, a core function will always be used and & will be
taken as a positive number larger than the distance between the centers of
neighboring elements. The accuracy of the discretization in Eq. (13) depends on: (1)
the ratio §/h, where A is the distance between neighboring elements; (2) the choice
of the core function, f;; and (3) the scheme used to determine of the values of @,.

From the analysis of the computational results, we found that best accuracy is
obtained for values of ¢ larger than the distance between neighboring elements. This
last requirement, é > A, will ensure that the core functions associated with neighbor-
ing elements are highly overlapping. This condition has been widely used in the
analysis of the convergence properties of vortex algorithms [11-157, and it has
been enforced in 2-dimensional vortex simulations to improve the accuracy of the
results [ 16, 17]. In the computations, this condition will be satisfied even when the
use of cubic volume elements is not practical. In this case, dV'="h h k., and 6 >4
is replaced by 6 >max {h, h,, &, }.

The accuracy of the discretization also depends on the shape of the core func-
tion /. The analysis of Beale and Majda [18] outlines a procedure that describes
the construction of core functions which satisfy the above conditions and yield
schemes of arbitrary high spatial order. In this work, the third-order Gaussian core
function

3

Sr)=g-e™ (15)

is used. This core function, which was proposed by Leonard [19], has been shown
to yield a second-order discretization by Beale and Majda [18].

The accuracy of the computation also depends on the method used to find (0}
Three methods have been proposed: (1) using a point measure of the vorticity,
©,(0)=w(X,,0); (2) using an average of the vorticity, ®,(0)dV; = | @(X, 0)dX;
and (3) solving the system of linear equations resulting from the application of
Eq. (13) to the mesh points X;,i=1, 2, .., N. In the 2-dimensional version of the
scheme, we found that the last algorithm yields the most accurate results for the
initial vorticity discretization and for the initial development of the flow field. Thus,

581/86/1-6
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in the following computations, we use the last scheme to distribute the initial
vorticity among the vortex elements.

Equation (13) remains unchanged if the quantity ,dV; is replaced by I3 dX,,
where 0X,;= (X,, ; — X,_)/2 is a small material line segment in the direction of the
local vorticity vector at X; and I7; is the circulation. This substitution becomes
unambiguous if the centers of the vortex elements are carefully chosen to lie on the
vortex lines of the initial vorticity field so that both I, and 6X; are well defined
according to the initial vorticity distribution and if the index i increases incremen-
tally in the direction of ®. In this representation, 5X, is associated with a material
line segment and /°; remains constant along a particle path, in accordance with
Kelvin’s theorem. As a consequence of the Helmholtz theorem, derived by compar-
ing Eqgs. (3) and (4), the evolution of 6X;, which will be denoted by dy,(¢), can be
related to the vorticity o,

|e,(0)]
16X

o,(t)= oy (2). (16)
Using Eq. (16), the vorticity distribution expressed by Eq. (13} evolves according
to

o(x, 1)=Z I 63:(2) 5 (x — 7:(2))- (17)

In this expression, yx,(t) is the coordinate of the material particle initially at X,
so that y%,(0)=X, is the Lagrangian coordinate of this point, and Jy;(0)=d6X,.
A vortex element is thus described by (I i, d%);- The evolution of the material
line element, and the vortex vector element, Jy; is governed by Eq. (5). Since y; is
the position of a material particle and dy; is the material line, their evolution is
governed, respectively, by

i
_d?—“(Xi(tL t) (18)

d
55Xi:5Xi'Vu(Xi(t)’ t). (19)

The solution of Eq. (4) is thus replaced by Eq. (17) and the solutions of Egs. (18)
and (19).

The velocity field u in Egs. (18) and (19) can be obtained by substituting
Eq. (17) into Eq. (11) and performing the integration. The result of the integration,
which represents a discrete desingularized version of the Biot-Savart law, Eq. (11),
is given by

1 & (X_Xi)X5Xi r;
U= g 2 TR T "(3>’ 20)
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where x(r)y=4n [, f(+')r'*dr’ and r,=|x—7y,|. For the core function given in
Eq. (15), the corresponding expression of « is

3

k(ry=1—e™". 21)

Ay

Using a first-order time integration of Egs. (18) and (19}, the vortex element
center, y,, and the vortex vector, dy;, can be approximated, respectively, by

X1+ V) =y, (1) +uly (1), 1) Vi (22)
and
Oy (t + V)= 07,(t) + 6%, (1) - Va(y, (1), 1) Vt. (23}

The velocity gradient Vu; can be evaluated analytically by differentiating the
velocity expression in Eq. (19), as proposed by Anderson and Greengard [207.
However, in order to reduce the computational effort, the following approach is
adopted. The velocity gradient along the vorticity vector can be approximated by

u(Xiq 1 (1), 1) — (1 (1), f)‘

Oy; - Vu(y,(r), 1) = (24)
L
Substituting Eq. (24) into Eq. (23) and using Eq. (22), we get
i (EHVE =y, 1+ Vi)
5xi(t+Vt)=xz+l( +Vi) i 1+ ) (25)

2

This approach explicitly enforces the solenoidality of the vorticity field. The vortex
filament scheme of Leonard [19,21] and the vortex stick scheme of
Chorin [22-24] employ similar, but not identical devices to account for the change
of vorticity as material lines are strained. In our computations, a second-order time
integration is used to move the points y

xF=2:(2) +uly,, 1) 41
and (26)

% [y %

L+ A0 =3:(0) + uxs 1) +2“ (7. 1) At.
As mentioned before, this scheme implicitly enforces the conuectivity of the vortex
lines. Tt, thus, ensures that the vorticity field remains solenoidal irrespective of how
accurate are the time integration or discretization of the vorticity field. Equa-
tion (17) implies that V-@ = O(|dy|?), since the integral over the closed filaments
is replaced by a finite sum.

As the flow develops strong stretch along the vortex lines, the value of oy,
increases and the amount of vorticity carried by each vortex element grows. To



82 KNIO AND GHONIEM

maintain a uniform resolution, a vortex element is split into two element each with
oy =0y;/2 and I'=1T,, whenever the magnitude of |dy, exceeds 2h,,,. This
amounts to redistributing the vorticity field among a larger number of elements to
prevent the deterioration of the accuracy of the discretization as the distance
between neighboring elements increases due to the strain field.

To study the accuracy and convergence of this scheme, we compute the propaga-
tion and the linear stability of a vortex ring using two models: the thin tube model
and the vortex torus model. Results of each model are compared with the corre-
sponding linear theory of stability. We continue the computations beyond the linear
range to illustrate the dynamics of the vorticity field at the later stages of develop-
ment of the flow.

III. RESULTS FOR THE THIN TUBE MODEL

This is a simplified model of a vortex ring. In this model, the cross section of the
ring, with core radius g, is represented by one vortex clement with core

13 23

11 = S 1 =
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med. In the thin tube model, the relative motion ol neighboring elements can allec

the local vorticity distribution within the tube. Although this is not expected to cure
the limitations of the thin vortex ring approximation, especially in determining the
stability behavior of the vortex ring, we start with this case for its simplicity and
computational efficiency. The model is used as a test case to examine the effect of
the vortex element length, A, and the time step, 4¢, on the accuracy of the computa-
tions.

IL1. Self-Induced Velocity

The physical ring, of radius R, is divided along its axis into N vortex elements,
each of length A=06X, =27R/N,i=1, 2, .., N. To ensure overlap between neighbor-
ing elements, we use 6 > /& so that the vorticity within the core can be accurately
discretized by the vortex elements. The vorticity distribution across the section of
the ring, (X)), is best approximated by a second-order Gaussian distribution with
a standard deviation o. Equation (20) is used to evaluate the self-induced velocity,
V, by summing the contribution of the elements around the ring. Results are com-
pared with the analytical expression of Saffman [25] for a thin vortex ring:
7 =In(8R/s)— C, where ¥ =4nRV/I is the normalized velocity and C is a constant
which depends on the vorticity distribution within the core. For a second-order
Gaussian distribution C=0.558 and ¢ is the standard deviation of the Gaussian
curve.

A comparison between the computed value of ¥, using different values of N, and
the analytical value is shown in Fig. 1 for ¢/R=0.1,0.2, and 0.3. The results
indicate that strong overlap between neighboring vortex elements, 6~ 24, is
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F16. 1. Normalized self-induced velocity of the ring, ¥= V/(R/4nR), vs. the number of vortex
elements around the perimeter, N. The analytical results of Saffman [25] are represented by straight
lines. 6/R=0.1-0; 6/R=02-> +;0/R=03 -0

necessary for the accurate prediction of 7. It also shows that, as the ring becomes
thinner, more elements are required to achieve accurate discretization, ie., N grows
as R/o increases. Therefore, for a fixed core size, the number of elements required
for accurate discretization grows with the curvature of the ring. The computed self-
induced ring velocities are in good agreement with the values evaluated from the
analytical expression for thin rings, while they are somewhat higher for thick rings.
This is expected since the analytical expression was derived under the assumption
that /R < 1.0.

I1.2. Stability of a Thin Ring

A more interesting problem, which provides a test for the accuracy of the time-
dependent calculations, is the growth of small perturbations on the vortex ring.
There exists a rigorous linear theory for the stability of vortex rings in two forms:
(1) for a ring with a non-deformable core, performed by Widnall and Sullivan [17];
and (2) a more elaborate theory where the dynamics of the flow within the core and
its deformation are taken into account, reported in Widnall er al. [2], Widnall
[267, and Widnall and Tsai [3]. The first analysis assumes that variations along
the vortex ring can be neglected and is only valid when the wavelength of the
perturbations is much larger than the core size. In the latter, the perturbation
within the core of vorticity is represented in term of “radial modes” of the linear
stability problem. In both studies, it is found that the ring is unstable if the waves
have no self-induced rotation. This condition can only be examined for the first
radial mode in the earlier study, where the theory spuriously predicts the instability
outside its range of validity. The more detailed analysis reveals that while the first
radial mode may not satisfy the zero rotation condition, the latter is satified at fixed
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wavenumber to core radius ratios for the higher radial modes. In practice, the
azimuthal instability of the second radial mode of bending, which has the higher
growth rate, is observed. The results of the current thin tube model will be com-
pared to the predictions of the first analysis. In Section 1V, the results of the vortex
torus calculations, in which a number of elements are used to represent the ring
cross section, will be compared with the theory of the deformable core.

To study the linear stability of thin rings using the thin tube model, a radial per-
turbation, with amplitude ¢ =0.02R and wavenumber #, is imposed on the axis of
the vortex ring. The wavenumber is the number of waves that are fitted along the
entire length of the ring axis. The size of the perturbation varies in the azimuthal
direction as Ap = ¢ sin(nf), where p denotes the radial direction in the plane of the
ring and 6 is the azimuthal angle. At =0, the ring lies in the x— y plane, the
z-direction being the streamwise direction, and the vortex elements are displaced so
that p = R+ 4p. We start with n=1 and increase the wavenumber by an increment
of one. The time step used is 47=0.10 and the selected value of circulation is
I'=2.0. Resuits are obtained for rings with ¢/R =0.10, 0.15, 0.20, and 0.25 and are
analyzed in terms of the growth of the perturbation in the radial and streamwise
directions. In the following, only the case of /R =0.1 is discussed in detail.

For n<n,, where n, is the wavenumber of the neutrally stable mode, the ring
spins around its unperturbed axis at a frequency A, that depends on the value of #.
The motion described by any point on the ring, with respect to the unperturbed
axis of the ring, is that of an ellipse whose major axis is in the radial direction and
the minor axis is in the streamwise direction (if the perturbed ring is opened to
form a rectilinear vortex, it will resemble a corkscrew spinning at a frequency A4,
and, hence, these bending waves are also called helical waves). The sense of rotation
of the ring is the same as that of the ring vorticity. The frequency of rotation, 4,,
starts low at small n, grows to a maximum and then decreases again as n moves
towards #,.. The amplitudes in the p-direction and z-direction are shown in Fig. 2
for n=2,5,8, and 12. The figure shows that the radial perturbation produces a
streamwise perturbation of almost the same magnitude. These modes are charac-
terized as being linearly stable since their amplitudes remain bounded.

At n=n,, the wave neither grows nor rotates. For 6/R=0.1, and n, = 13 the ring
remains in its original plane without bending, as depicted in Fig. 3. For the next
mode, n* =14, the wave grows in the radial direction and then in the streamwise
direction so that the total amplitude grows exponentially in time, ie., the ring
becomes linearly unstable, as shown in Fig. 4. Moreover, wave rotation is not
observed. At higher values of n, n>n*, the ring is stabilized again and the eigen-
functions behave in a similar way to those corresponding to # < n,,, with the excep-
tion that the major axis of the ellipse is now in the streamwise direction and the
sense of rotation of the wave is reversed. The wave amplitudes in the p and
z-directions are shown in Fig. 5 for n=15 and 19.

Similar observations are made for rings with ¢/R=0.15, 0.20, and 0.25. In all
cases, the unstable mode n* is a bifurcation in the eigenfunction that corresponds
to 4,=0. In Fig. 6, 4,, normalized with respect to I/R? is plotted against the
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Fi6. 2. Evolution of the amplitude of the perturbation in the radial p — and streamwise z-dirsction
for a vortex ring with ¢/R =0.1, computed using the thin tube approximation. Both amplitudes are nor-
malized with respect to the initial perturbation, &/R =0.02, and time is normalized with respect to R%/I".
The wavenumber n=2, 5, 8, and 12 as indicated.
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Fie. 6. Frequency of rotation A’, normalized with respect to R*/R, vs. non-dimensional wavenum-
ber K, defined as K=no/R:6/R=0.1 »v; 6/R=0.15-* 6/R=02- v; ¢/R=0.25 - (diamond}.

non-dimensional wavenumber defined as x=ng/R. The unstable mode
k* =n*g/R ~ 1.25 corresponds to a non-rotating mode, 4, =0, for all the values of
o/R. This is in agreement with the analytical resuits of Widnall and Sullivan [ 1} for
the stability of rings with non-deformable cores. They observed that a mode
becomes unstable when the self-induced rotation of the wave balances the rotation
induced by the ring, and the energy of the perturbation is expended in stretching
the wave amplitude.

In order to check on the accuracy of the computations, we varied the discretiza-
tion parameter 4 by using more elements around the ring axis. Figure 7 shows the

2.5 T T T T T T T

LOG(A)

TIME

FiG. 7. The growth of the natural logarithm of the unstable mode amplitude, #* =7, for the ring
with o/R =0.2, computed using N = 30-140 with increments of 10.
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growth of the amplitude of the perturbation a,=./4p>+ Az*, computed using
an increasing number of elements for the unstable mode of a ring with
6/R=02,n*="7. Although N =30 is the smallest number of elements required to
satisfy the condition é> A, we notice that N=90 is necessary to compute the
growth rate accurately. This is the same number of elements required for the
accurate prediction of the self-induced velocity of the unperturbed ring, = 3.1309,
as seen in Fig. 2. Using this value of N was also necessary for the discrete vorticity
field, 2(X), to become independent of N. This is not surprising since the stability
of the wave depends strongly on the velocity and strain field induced by the ring
on the perturbation. The growth rate «,, defined as a, = d(log a,, )/dt, is computed
from Fig. 7 as 0.162. The analytical value of a_ for the same value of ¥ is
a, =0.157 [1].

The effect of the time step, A4¢, on the computed results is studied in a similar
way. Figure 8 shows the growth of the wave amplitude for ¢/R =0.2, using N = 100,
employing decreasing values of 4z. For 4¢ < 1.0, the computations are almost insen-
sitive to the choice of At Results diverge for A:> 1.0, showing an accelerated
growth of the perturbation accompanied with a high rate of stretch along the ring.
For the other cases of ¢/R, the computations were repeated using 4¢=0.05 but
yielded no appreciable change in the results. In the following computations, we use
At =0.10 for rings having the same value of circulation.

In Fig. 9, we plot the critical wave number n* against the self-induced
velocity ¥, used to characterize the ring, for the four cases of o/R. We have
reproduced on the same figure the analytical results of Widnall nd Sullivan [1] for
the non-deformable core model and their experimental results. The results agree
well with the results of the stability theory of vortex rings with non-deformable
cores. The model, as expected, is unable to describe the stability characteristics of

4.9 T T T T T T T

33 .0 B
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Fic. 8. The growth of the unstable wavenumber for the ring of Fig. 7 using 4¢=2.0, 1.0, 0.5, 04,
0.3, 0.2, and 0.1, all using N = 100.
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FiG. 9. The computed wavenumber of the most unstable mode n* (4)vs. the normalized self-
induced velocity, ¥/, compared with the analytical (o) and experimental (x) results of Widnall and
Sullivan [1].

a vortex ring with a deformable core. The computed results are, however, closer to
the experimental data than those obtained by the long wave stability analysis. This
seems to support earlier speculation that the use of vortex elements aliows small
first-order deformation in the vorticity core of the ring which causes the computed
results to behave slightly better than those of the corresponding linear theory.

I11.3. Shape of Instability

The growth of the perturbation is now examined by observing the deformation
it develops along the vortex ring, i.e., the eigenfunction of the instability. Figure 10
depicts two views of the vortex elements, connected along the direction of vorticity,
for a ring with ¢/R=0.25, at r=140, 180, 210, and 230. The ring is initially per-
turbed at #* =6 with ¢/R=0.02. According to the results, the evolution of the
instability can be divided into three stages. In the linear stage, r < 140, the perturba-
tion grows as a standing wave, as predicted by the linear theory and verified by the
analysis of the numerical results in the previous section. The growth of the number
of vortex elements, and concomitantly the vorticity, is negligibly small.

In the non-lincar stage, 140 << 190, the amplitude of the instability continues
to grow, but the condition of zero rotation is no longer satisfied. Due to this
growth, the peaks of the waves extend radially outwards, while they are stretching
in the direction opposite to the direction of propagation of the ring. The peaks
suffer a strong stretch that sends them away from the original axis of the ring,
generating counter-rotating vortex rods, or hairpin vortices. In the meantime, the
valleys of the wave rotate slowly, forming flat connctions between neighboring
hairpins.

At the later stages, 7> 190, violent stretching of the hairpin vortices, with an
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F1G. 10. The form of the vortex ring with ¢/R = 0.25 excited at the unstable wavenumber n* = 6. The
plots are obtained by projecting the ring on planes parallel and normal to its direction of propagation

at 1 =140, 180, 210, and 230, respectively, arranged from the top.
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exponential growth of the total arc length of the ring, is observed. However, the
outward-reaching, inverted U-shaped vortices, the hairpin vortices, do not continue
to move. outwards. Instead, they fold backwards, stretching towards the original
axis of the rmg In the meantime, the number of elements used to discretize the rmg
ontinues to increase, erowing from N=—90 at ;=0 to N =2802 at z=—2930 T¢

models that employ thin filament approximations of vorticity structures, e.g.,
27, 28].

As has been shown before, the thin tube model does not allow enough changes
within the core of vorticity to capture higher order radial bending modes that sup-
port the short wave instability observed experimentally. To overcome this limita-
tion, a more detailed description of the ring in which the core vorticity is discretized
into a number of vortex elements with 6 <o, is used in Section 1V. We call this
model the vortex torus.

IV. RESULTS FOR THE VORTEX TORUS

This is a more elaborate model of a vortex ring. The terminology is motivated by
the way the physical ring is discretized. The core of the vortex ring is represented
by several vortex elements whose cores are smaller than that of the enclosing torus,
¢ < ¢. The vortex ring is thus modeled by a number of thin vortex tubes arranged
within its core, forming a vortex torus. Note that we still call the physical object a
ring, while the model is labelled as torus. The motion of the elements throughout
the cross section of the torus allows substantial deformation of its core at differsnt
radial and azimuthal stations. Therefore, higher order radial modes associated
with the instability of Vortex rings, as observed in the hnear stablhty analysis, are

dod e T - : i WP S o MOPU IR, PRl

S il = (

IV.1. Discretization of the Vorticity Core

The initial vorticity of the vortex elements, ®,;(0), is computed by solving a linear
system of equations formed by applying Eq. (17) to 3-dimensional radial mesh
within the torus. The centers of the vortex elements are located at the centers of the
mesh cells, and the left-hand side of Eq. (17) is set equal to the total vorticity of
the vortex ring at the center of the vortex element. This ensures that the numerical
value of the vorticity at the mesh center is equal to that of the initial vorticity of
the ring. The mesh is constructed using N, cross sections of the torus separated by
an angle 40 =2xn/N_, and N, points within each cross section. The elements within
each cross section of the ring are arranged on N, radial locations. Initially, the vor-
ticity of the ring, Q,, is aligned with the azimuthal 6-direction and is independent
of 8. The coordinate system which is used to describe the ring is shown in Fig. 1ia.
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NS=1
Ns=2
N_=3
S
N_ =4

Fig. 11. (a) The geometry of the vortex torus, (b) Schematic cross sections of the vortex torus show-
ing the location of the vortex elements for various meshes used in the computations.
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Thus, N, equations are solved for the initial vorticity of the elements within a par-
ticular cross section. The initial vorticity within the core of the ring is taken as a
third-order Gaussian distribution

1 P U
(1) = zexp 55 e @)
where e, is the unit vector along the unperturbed ring axis, r is measured from the
center of the vorticity core, as shown in Fig. 11a, a=n/3y(2/3}, ¢ is the standard
deviation of the Gaussian, and y denotes the gamma function. The constant a is
chosen so that the normalized circulation of the vortex ring 1s 2, and £, is positive
so that the ring moves in the positive z-direction in a right-handed reference frame.

Three different meshes are used to discretize the vorticity of the ring, as shown
in Fig. 11b. Mesh I is a uniform radial mesh; mesh I1 is a staggered radial mesh;
and mesh III is an equi-spaced radial mesh. In meshes I and I, all the radial sta-
tions within the core have the same number of eclements. In mesh I, the elements are
aligned on radial rays, while in mesh II, they are radially staggered. In both cases,
the radial distance between neighboring elements increases as we move cutwards.
In mesh IIL the number of elements increases as we move outwards to maintain the
radial distance between neighboring elements approximately the same. In all cases,
the number of elements in the #-direction for each radial location, ¥_, was chosen
such that the self-induced velocity of individual thin tubes were accurately predicted
according to the analysis in the previous section.

Many choices of the mesh and of the core of the vortex elements would satisfy
Eq. (13). The locations of the centers of the vortex elements, and the core radius of
the elements, J, are chosen to satisfy: (a) the element core radius should be large
enough to ensure overlap between neighboring elements; (b} the order of
magnitude of the vorticity of the elements at different radial stations is the same to
optimize the utilization of the elements; and (c) the total circulation of the elements
is as close as possible to the circulation of the ring. When it was not paossible to
satisfy the three conditions simultaneously, a compromise which favored the enfor-
cement of condition (c) was used.

Tests for the accuracy of the discretization of the vorticity field were performed
for a ring with 6/R=0.275 for the following cases: (1) mesh I with N, =9, 17, 25,
and 33; (2) mesh II with N, =17, 25, and 33; and (3) mesh III with N, = 19, 37,
and 61, all shown in Fig. 11b. The results of the computations are summarized in
Table 1. The accuracy of the discretization is measured in terms of: (1) the devia-
tion of the computed value of I" from the intended value of 2; (2) the predicted
value of the self-induced velocity; (3) the error in the vorticity field
E, =1/I"{ 1824(r)— wy(r, 0)| d4, where A is the cross-sectional area of the vortex
torus; and (4) the predicted most unstable mode n*. The error E, has been
preferred over ¥ as a measure of the discretization accuracy since exact values of
the propagation velocity are not known and most available expressions are
asymptotic in the small parameter o/R. In light of the results of the first three
quantities, the following observations can be made:
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TABLE I

Summary of Discretization Results for a Ring with o/R=0.275

N, N, N, /R Ar/R r 7 E1x 100 n*

Uniform mesh 1

9 1 120 0.1875 0.1700 2.0033 3.277 3.5047 10
17 2 120 0.1550 0.1087 1.9993 3.291 34472 12
25 3 120 0.1425 0.0900 2.0089 3.285 2.8073 12
33 4 120 0.1425 0.0650 1.9988 3.297 34559 12

Staggered mesh 11

17 2 120 0.1550 0.1090 2.0027 3.290 3.4250 12
25 3 120 0.1512 0.0825 2.0011 3.265 2.1934 12
33 4 140 0.1250 0.0762 2.0014 3.303 2.3219 —

Equi-spaced mesh 111

19 2 120 0.1550 0.1080 2.0007 3.281 3.1814 12
37 3 120 0.1550 0.0910 1.9992 3.296 0.4120 12
61 4 120 0.1500 0.0705 1.9999 3.297 0.3480 —

(1) To satisfy the conditions for accurate discretization, the core radius of the
vortex elements, J, must decrease at a slower rate than the separation between
elements, 4. In each case, the results show that § decreased slightly while the
number of elements was doubled. This is in agreement with the convergence results
of Beale and Majda [12, 137;

(2) The computed values of the self-propagation velocity, ¥, are within less
than 0.5% variation for all cases. This is despite the larger error in the vorticity
discretization, E,. A similar trend is shown in the values of I". The fact that both
7 and I' are integrals, or averages, of the vorticity field explains why the error
diminishes.

(3) E, decreases substantially when an equi-distance mesh, which guarantees
the maximum overlap among the vortex elements at the outer radial stations, is
used. Note that when using mesh I with N, =25 and 33 and mesh IT with N, =33,
it was not possible to satisfy condition (a) at the outermost radial location of the
elements, which resulted in a non-diminishing E,. Using almost the same number
of elements in mesh III resulted in an order of magnitude drop in the error.

IV.2. Stability of a Vortex Torus

To investigate the effects of the discretization parameters on the evolution of the
instability of the ring, the torus with 6/R=0.275 was initially perturbed by fitting
n sine waves with an amplitude &/R = 0.02 along the perimeter. The number of cross
sections along the 6-direction was chosen so that at least 10 elements were used to
fit a single sine wave. The integration time step A¢=10.10, and the computations
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were carried for 1000 time steps. To obtain an accurate measure for the evolution
of the perturbation around the torus, the computed energy spectrum of the ring was
examined. The energy spectrum was evaluated by computing the discrete Fourier
transform of the energy calculated at 200 points evenly distributed along a circle of
radius p =R, located at z=z,, z, being the average streamwise location of the
vortex elements. In the following section, we will investigate the growth of the
perturbation in the physical plane.

Figure 12 shows the evolution of the amplitude of the excited wavenumbers
n=17,8,9,10, 11, and 12 using mesh I with N,=1 and N,=9. At n=7 and 8, the
amplitudes oscillate without growth, indicating that the ring is stable to these
waves. For n=9 and 10, the amplitudes grow exponentiaily at the early stages,
t <30, and continue to grow at a more moderate rate at later times. The rate of
growth is higher for n = 10, indicating that this is the fastest growing mode n*. For
n>n*, the amplitudes of the waves oscillate and a stable behavior is observed. The
computations were repeated using mesh I with N, =2 and N, =17, and the results
are plotted in Fig. 13 showing the evolution of the amplitudes of the waves
n=9,10, 11, 12, and 13. These results show that 10 > n > 13 are stable waves, while

=11 and 12 are unstable waves. Here, n* =12 corresponds to the most unstable
perturbation.

By repeating the computations for N,=25 and 33 using mesh I, we confirmed
that n* = 12. As shown in Table I, the same value for the most unstable wavenum-
ber was obtained using mesh I with N,=17 and 25, and using mesh III with
N,=19 and 37. A more detailed account of the results of these computations is
shown in Fig. 14. These results indicate that mesh I with N,=9 did not provide
enough resolution to capture the correct unstable mode. More careful inspection of
Fig. 14 reveals that while the early behavior of the results of mesh I with ¥, =25

LOG(A)

a 28 40 60 8@ 100

TIME

Fic. 12.  Evolution of the naturel fogarithm of the amplitude of the excited modes for the vortex ring
with ¢/R=0.275 using mesh I and N, =9.

581/86/1-7
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LOGLA)

2 20 40 60 80 108

TIME
FiG. 13. Natural logarithm of the amplitude of the excited modes for the ring of Fig. 13 using
mesh I and N,=17.

and 33 agree with those obtained using the other discretization parameters at early
time, they diverge at later times.

Comparison of the evolution of the instability, when computed using the eight
discretization meshes, reveal the following:

(1) At least two radial locations within the core are needed to ensure
accurate prediction of the unstable mode in vortex rings. When we used mesh I
with N =1, the resolution of the vorticity field could not capture the correct
wavenumber of the unstable mode. This is expected since the instability observed

-2.0 T T T T

LOG(A)

@ 20 40 68 80 100

TIME

FiG. 14. Evolution of the natural logarithm of the most unstable mode n* =12 for the ring of
Fig. 12 using: mesh I with N,=9, 17,25, and 33; mesh II with N,=17 and 25; and mesh III with
N,=19 and 37.
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here, according to the results of the linear theory, corresponds to the second radial
mode which should be properly represented. A single radial station within the core
is not sufficient for proper resolution of this mode. Note that using more than two
locations did not affect the value of n*.

{2) For accurate simulations using the vortex method, overlap between the
elements must be maintained at all times. When this condition is not observed, con-
vergence of the results may not be achieved. Note that the loss of overlap is respon-
sible for large error in the estimate of the initial amplitude of the perturbation for
mesh I with N, =25 and 33, as seen from Fig. 14.

(3) The prediction of the unstable mode and the evolution of the instability
are independent of the initial location and number of vortex clements when: (a}
overlap between neighboring elements is ensured, {b) at least two radical stations
within the core are present and (c) a sufficiently small time step 47 is used.

These conclusions were further confirmed by inspecting the long time energy
spectrum for the five cases for which conditions (a)~{c) hold, mesh I with N, =17,
mesh Il with ¥, =17 and 25, and mesh III with N, =19 and 37. Figure 15 shows
the behavior of the unstable wavenumber, n* =12, and its first harmonic, n = 24,
for the five cases. The response of the unstable mode and that of its harmonic are
in close agreement for the five cases. For cases where overlap was not maintained,
the generation of the first harmonic was not observed.

To derive the relationship between ¥ and n*, the computations were repeated for
rings with /R =0.325, 0.375, and 0.45. The corresponding seli-induced velocity was

LOG(A)

@ 20 40 60 80 109
TIME

FiG. 15. Natural logarithm of the amplitude of the unstable mode, n¥, and its first har-
monic, n=2n*, for the ring of Fig. 12 using mesh I with N, =17, mesh Il with N,=17 and 25; and
mesh I, with &,=19 and 37.
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TABLE 1I

Summary of the Computed Unstable Wavenumber Using Mesh I

o/R n N,=9 N,=17
0.275
7 Stable —
8 Stable —
9 Unstable Stable
10 Unstable Stable
11 Stable Unstable
12 Stable Unstable®
13 — Stable
0.325
6 Stable —
7 Neutral —
8 Unstable? Stable
9 Stable Unstable
10 Stable Unstable®
11 — Stable
0.375
5 Stable —
6 Unstable e
7 Unstable® Stable
8 Stable Unstable
9 Stable Unstable
10 — Stable
0.45
4 Stable —
5 Unstable Stable
6 Unstable? Unstable
7 Stable Unstable®
8 — Stable
9 e Stable

“ Indicates the most unstable.

7=3.13,2.98, and 2.79. The tori were discretized on mesh I using N,=9 and 17,
and were perturbed as for the 0/R=0.275 case. Results are summarized in Table II,
and plotted on Fig. 16. These results indicate that the relationship between the
unstable wavenumber and normalized self-induced velocity derived by using a
single radial station within the core is not accurate. The computed results obtained
by using two or more radial stations are in excellent agreement with the results of
the linear theory and in very good agreement with experimental data. It is interest-
ing to note that using two radial locations for vorticity discretization, we find two
amplified wavenumbers. This indicates that the ring is unstable to a narrow
frequency band and that, in reality, both wavenumbers may grow simultaneously

[3].
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IV.3. Shape of Instability

The shape of a vortex ring undergoing deformation due to the growth of
azimuthal instability is now analyzed using the resuits of numerical simuiation
based on the vortex torus model. We study the evolution of a ring pertubed at the
most unstable wavenumber and compare the results with observations made by the
linear stability theory, starting with analysis of the evolution of the flow field of a
ring perturbed at a stable wavenumber.

Figure 17 depicts two views of the vortex torus with ¢/R=0.275 when perturbed
by a stable wavenumber =9, at time =10, 40, 70, 100, computed using mesh 1]
with N,=17. These views are generated by projecting the lines connecting the
vortex elements initially aligned aong vortex lines on the planes normal and paraliel
to the direction of propagation of the ring. The figure shows that the vorticity core
experiences a mild deformation due to the motion of individual vortex elements
around the original axis of the torus. However, the amplitude of the perturbation
remains bounded while the waves rotate around the axis of the ring, as seen by the
exchange of peaks and valleys at the same azimuthal location around the ring. The
frequency of rotation of the waves is the same as that predicted by the curve
in Fig. 13. The number of vortex elements used to discretize the vorticity field

of the rino remainc_cnnctant durina the entire run NV =2040 indicatineg thet the

1€ TROST UDSTADIC WAVENUIDEr, A~ = 1.2, AEPICIea al Tmie 7 = 3U, 0U, YU, 1 ZU. 1uring
the initial stages, and within the linear range of the instability, the waves do not
rotate around the axis on the ring while their amplitudes grow at an exponential
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Fic. 17. The form of the vortex torus with ¢/R =0.275 perturbed at n=9 at t= 10, 40, 70, and 100,
respectively, arranged from the top. The results are obtained using mesh I with N, =17 and shown in
terms of the lines connecting neighboring vortex elements arranged in the vorticity direction.



FiG. 18. Perspective views of the vortex torus of Fig. 17 excited at n* = 12 depicted at 1 = 30, 60, 90,
and 120, taken from the point of view of an observer standing ahead of the ring and looking at an
angle f=60° with respect to the direction of propagation. The ring is represented by all vortex tubes
used in the computations, connected in the direction of vorticity, and the ring is propagating in the
upward direction.
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rate. The growth of the perturbation as standing waves has been predicted by the
linear stability theory. The perturbation grows in the radial and streamwise direc-
tions causing substantial non uniform deformation around the ring. At ¢ > 30, while
the rate of growth subsides due to the onset of non-linear dynamics, the deforma-
tion of the ring continues to reshape the vorticity structure. The figure shows that
the outer sections of the standing waves continue to extend radially outwards while
they are being tilted in the direction opposite to the direction of propagation of the
ring. On the other hand, the inner parts of the waves extend inwards towards the
center of the ring while they are being tilted opposite to the direction of propaga-
tion of the ring. During this stage, the entire cross section of the core moves almost
in phase. This process leads to a redistribution of the ring vorticity into a number
of sectors equal to the number of waves.

At later stages, ¢ > 90, the core experiences more deformation due to the motion
of different radial locations at different speeds. The figure shows that the inner and
outer radii of the ring move in anti-phase, leading to deformations at scales smaller
than the scale of the initial perturbation. The formation of small scales can be
examined by looking at the long time energy spectrum. Figure 19 displays the time
change of the amplitude of the perturbation wavenumber, n*, and of its higher har-
monics, 2n* and 3r*, showing how higher harmonics are energized after the satura-
tion of the fundamental frequency. It is interesting to observe that the generation
of small scales takes the form of an energy cascade in which successively excited
wavenumbers are higher harmonics of the most unstable wavenumber. This is also
associated with severe stretching of the vortex lines, as indicated by the growth of
the number of vortex elements from N =2040 at r=0 to N =6936 at r = 140, where
we had to terminate the computations.

Three perspective views of the vortex ring at =140 are shown in Fig. 20. The

LOG(A)

_8 . z 1 1 1 1 i 1
] 20 40 60 8@ 100 120 140

TIME

FiG. 19. Natural logarithm of the amplitude of perturbation wavenumber, n*, and of its higher
harmonics, 2n* and 3n* for the ring of Fig. 18.
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FiG. 20. Three perspective views of the vortex ring of Fig. 18 at = 140. The plots are generated as
in Fig. 18 with f=40°,60° and 90°.






NUMERICAL STUDY OF 3D VORTEX METHOD 105

measured by the deviation from the target profile. The initialization procedure has
to be further constrained by the condition that neighboring elements must have
overlapping cores. When this last condition was not satisfied, results were found to
diverge rapidly. Best results were obtained when the initial mesh is chosen so that
the distance between neighboring elements is almost the same in all directions.
Finally, it is also shown that maintaining overlap between neighboring elements at
all times is necessary. This is achieved through the redistribution of the vorticity
field into a larger number of elements when the strain field causes separation
between neighboring elements to exceed the core radius. An analogos situation is
encountered in the 2-dimensional case [17], where overlap can be lost due to
strain normal to the direction of the local vorticity vector. We have not experienced
such a problem in the case of the vortex ring since the instability did not cause
substantial growth of the core itself.

Results of the thin tube model are found to be in good agreement with the results
of the corresponding linear theory. In this model, the dynamics of the vorticity core
are neglected, and the instability of the vortex ring is spuriously predicted [27. The
model is in poor agreement with experimental data, however, the behavior of real
unstable vortex rings is qualitatively obtained. The study shows that the unstable
wave number corresponds to a non-rotating mode and that the unstable wavenum-
ber increases with the normalized self-induced velocity of the ring. Results for the
vortex torus model are in excellent agreement with theoretical results on the
stability of real vortex rings and in good agreement with experimental data. They
suggest that the numerical constraints discussed above have to be supplemented
with the condition that the initial mesh where the vorticity is discretized should be
appropriate for the physics of the problem to be properly represented. The vortex
ring is found unstable to perturbations lying in a small overlapping band around
the critical wavenumber.

The evolution of the instability beyond the linear range indicates that the onset
of the turbulization of the core of vorticity is associated with harmonics of the
unstable mode, excited in succession in the form of a discrete energy cascade. The
ring is substantially deformed around the azimuth and hairpin vortices are
generated at the edges of the vorticity core. While a gualitatively similar behavior
was obtained by using the thin tube model, the shape of the vortex torus is more
realistic and in much better agreement with experimental observation.
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